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DISCRETE MODEL FOR INNER-SPHERE REORGANIZATION OF ANIONS

Paul DELAHAY and Andrew DZIEDZIC
1

Department of Chemistry, New York University, New York, New York 10003, USA

Received

The energy of inner-sphere reorganization of univalent anions in

photoionization in aqueous solution is calculated from a multipole expansion

accounting for ion-solvent electrostatic interaction. Only terms pertaining

to nuclear motion are retained to the exclusion of induced moments. London

dispersion, Born repulsion, cavity formation and hydrogen bonding are also

taken into account. Calculated and experimental energies agree very well for

halide and hydroxide ions in aqueous solution.

1. Introduction

Photoelectron emission by an aqueous solution of the univalent anion

A-(aq) is the opposite of the hydration of the ion A-(g) except that the

negative charge is removed from solution by the emitted electron and the

hydrated atom or radical A(aq) is left in solution in the case of emission.

Solvation of anions and nuclear reorganization in photoionization therefore

are closely related [1] (fig. 1). Solvation of A-(g) is described as the

formation of a cavity of radius r. and the orientation of N. solvent

molecules in the inner-sphere region of A-(aq), e.g.,.in an octahedral

Configuration. There is also polarization of the outer-sphere region which is

treated as a continuous medium. Emission involves the removal of the charge

e-(g) from the anion A-(aq) to the gas phase and a change of the cavity 0

radius from ri to the value rf corresponding to the atom or radical A.

Present address: The Perkin-Elmer Corp., 50 Danbury Road, Wilton, Conn.
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Subsequent nuclear reorganization changes the solvent configuration around

A(aq) and, in some cases, the number of solvent molecules from Ni to Nf,

e.g., from an octahedral to a tetrahedral configuration.

Two opposite approaches can be followed to calculate the energy of

inner-sphere reorganization in photoionization. (i) The terms not

corresponding to nuclear motion and the outer-sphere Born solvation term are

subtracted from the experimental solvation energy. (ii) Only the terms

pertaining to nuclear motion are retained in the theoretical expression for

the solvation energy. The first approach used in [1] yields the

reorganization energy as the difference between two quantities which are

significantly larger than the energy being sought. The second approach

adopted in the present paper neither has this disadvantage nor requires the

knowledge of the solvation energy. A fairly standard model of ionic solvation

[2] will be used.

The approach in this paper is similar in principle to that followed by

Marcus [3] in his treatment of outer-sphere reorganization except that a

multipole expansion of the inner-sphere potential is used instead of the

continuous medium model for the outer-sphere region. The possibility is being

examined of extending the present treatment to the calculation of the

inner-sphere reorganization energy in the photoionization of metal cations and

complexes. A bond-stretching model [4,5] is used -at the present for these

species under the conditions discussed in [1] in the case of photoionization.

2. Energy of inner-sphere reorganization of anions

Consider the photoionization of the univalent anion A-(aq) in aqueous

solution with the formation of the hydrated atom or radical A(aq). In view of

the discussion in sec. 1, the energy UIN (> 0) for inner-sphere

reorqanization may be written as

- -
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UIN a Uf(nucl) - Ui (nucl), (1)

where U f(nucl) and U i(nucl) represent, respectively, the terms in the

expression of the hydration energies of A(aq) and A-(aq) which correspond

only to nuclear motion in the solvation of these species. The superscripts f

and i in this and subsequent equations denote the species A(aq) and A-(aq),

respectively. The term U f(nucl) in eq. (1) represents the nuclear

contribution to the solvation energy of the species A(aq) surrounded by its

equilibrium inner-sphere shell of solvent. Conversely, U i(nucl) denotes the

nuclear contribution from the species A(aq) surrounded by the nonequilibrium

inner-sphere solvent shell of the ion A-(aq). Furthermore, the

reorganization energy UIN is determined by the change in ionic valence

caused by photoionization and not by the absolute value of the ionic valences

of the species involved in this process. Equation (1) is the counterpart of

the expression for the free energy of orientation polarization in the

treatment of outer-sphere reorganization on the basis of a continuous medium

model [3].

The expression for U (nucl) is taken from [2] with the additional

consideration of the difference in water orientation around anions and

cations. By analogy with [2], one writes

U f(nucl) = U fp+ Uf  + Uf + Uf  (2)disp rep v c

where Udis is the London water-water dispersion energy; Uf  thedisp rep

Born water-water repulsion energy; Uf the energy corresponding to the

volume change of the solvent upon hydration of A(g); U the energy for
c

cavity formation and the breaking up of the solvent structure in the hydration

of A(g).

Combining eqs. (1) and (2) with the expression for U i(nucl) from [2],

one obtains

ft I
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UIN = _ U (ep) - U (eq) - U (pp) - U (pq) - Ui(qq) - Udis pi i i f + f f f

- Urep -v -c disp Urep Uv U11 (3)

where the first five terms on the right hand side represent interaction

energies involving the change (e) of ionic charge upon photoionization, water

permanent dipoles (p) and quadrupoles (q). The next four terms with

superscript i in eq. (3) are analogous to the corresponding terms in eq. (2).

Explicit forms except for the U.'s and U 's are [2]v c
Ui(ep) = - (N2ep/r2)Cos (4)

U (eq) = Niee/2r3 (5)

U i (pp) = (Bp2/r )cos2 8 (6)

i ' 4U (pq) = - (Cpe/rj)cos 8 (7)

U (qq) = Do2/r 5 (8)
U F Ia2 /r6(9

Udisp = _ FiI r (9)

U = - (1/x){2Ui(ep) + 3[U'(pp) + Ui(eq)] + 4Ui(pq) + 5Ui(qq) + 6U i.rep disp
~(10)

f = FfIa 2 /r- (11)Udisp f f

Sf -6Uf Ix, (12)rep disp

where Ni is the number of solvent molecules in the inner-sphere shell of

A-(aq); ri the charge-point multipole distance, namely ri = rc +w

(rc and rw crystallographic radii of A-(g) and water, respectively); rf

= rr + rw (rr the radius of A(g)); e the absolute value of the electronic

charge; p the permanent dipole moment of water; e the quadrupole moment of

water; s the angle between the vectors representing the electric field of the

charge and the permanent dipole of the solvent; I the gas-phase ionization

energy of water; a the polarizability of water; x the exponent in the Born

repulsion expression. The dimensionless coefficients B to F are [2,6] B = 2.296
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and 7.114; C = 1.722 and 5.336; D = 0.5490 and 2.030; F = 0.2373 and 1.160 for

tetrahedral and octahedral configurations of the solvent molecules, respectively.

The quadrupole moment e of eqs. (5), (7), (8) was calculated by assuming

that water molecules rotate freely about the OH-anion axis. The system of

coordinates of [7] is defined as follows: the water molecule and the xz axes

are represented as being in the plane of the paper; the positive segment of the

z-axis bisects the HOH angle; the angles between the x- and z-axes and the

OH-anion axis are v/2 - o and a, respectively. All the y-components of e are

equal to zero in view of the assumption of free rotation of the water

molecule about the OH-anion axis. Thus, one has exz =(2 + 2 )/2

and the angle between 9xz and the OH-anion axis is /2 - a + cos- 1 exx/exz.

Hence,

0 92 + e2l)12 ~/2 - s+ cos- 1 9 (9 2 + 02F121)(13)
xx zz xx xx zz

*26 where xx 2.636 x 10-26 and e = -0.135 x 10-26 esu cm2 according to [7].

The energy Uiv is according to [2]

Liv = - (Veff - Vpm)/a, (14)

where veff and v are the effective and partial molar volume of the anion,_,-f. pm

respectively, and a c is the compressibility of water. A negative sign is

assigned to the right-hand-side of eq. (14) in the present treatment since the

initial state corresponds to the solvated ionic species and thus differs from

that of [2]. Data on these volumes are given in [8]. Actually, the

right-hand-side of eq. (14) is equal to the free energy AG' rather than
v

the energy, but this does not matter in view of the smallness of this term in

eq. (3) (see numerical results below). The energy Uv for the atom or

radical A(aq) was taken to be equal to zero.

4-,L ,l ,.,.,' - , .- 'i i. '-
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The difference U - Ui in eq. (3) was obtained by noting that

solvation of A(aq) for the halogens involves only the rotation of two of the

four water molecules surrounding A(aq) without a net change of hydrogen bonds

and with conservation of tetrahedral symmetry [9]. In contrast, the

substitution of the halogen atom by the halide ion involves a change from

tetrahedral to octahedral configuration and consequently the breaking of one

hydrogen bond. The reverse process from ion to atom therefore involves the net
, f  i
formation of one hydrogen bond, i.e., c - Uc = -0.27 eV on the basis

of the calculation in [2]. This analysis does not apply to the hydroxide ion

since both this ion and the hydroxyl radical have the same number of hydrogen
f i

bonds [9,10]. Hence, Uf - Uc = 0 for the photoionization of hydroxide ion.

The values of the energy UIN from eq. (3) and the contributions to this

energy are listed in table 1 with relevant data [11-14] for the

photoionization of the halide and hydroxide ions. The charge-dipole term

-U (ep) is dominant and the charge-quadrupole term in -U (eq) is very

significant. The term AUc pertaining to hydrogen bonding is far from

negligible for the halides. The other terms in table 1 are generally smaller

in absolute value than the charge-dipole and charge-quadrupole terms or are

even negligible. The charge-octopole term was not included because only terms

(r 2) and its first gradient (r 3 ) are

significant (> kT) in the multipole expansion according to [15] if the

ion-point multipole distance is 3 A.

3. Comparison with experimental free energies of inner-sphere reorganization

The free energy of reorganization can be computed from experimental

threshold energies Et for photoelectron emission by aqueous solutions of the

anion being studied [16]. One has
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Et = aGH + AG + RIN + ROUT + leJAx , (15)

where aGH = 4.48 eV; AG is the change of free energy for the reaction

A-(aq) + H+(aq) = A(aq) + 1/2H 2 (g); aX is the difference between the

surface potentials of the solution of A-(aq) and water. This last term is

generally very small (< 0.05 eV) and was neglected. The free energy ROUT

for the outer-sphere reorganization is [3]

1 12RO -l)e /2a, (16)
OUT  op s

where c (= 1.777 at 25°C) and c are the optical and static dielectric

constants of water, respectively, and a = rc + 2rw

Values of RIN computed from eqs. (15) and (16) for the halide and

hydroxide ions are listed in table 2 with supporting data. The threshold

energies were obtained in earlier work [1,17] except for fluoride. The

previously used glass cell and quartz rotating disk target were not suitable
-.

for fluoride solutions because the leaching of impurities under the action of

the fluoride solution (5 M KF) resulted in strong spurious photoelectron

emission at photon energies well below 10 eV. A plastic-lined cell and

4platinum rotating disk target were satisfactory but not easy to use because of

difficulties in removing traces of low-energy photoelectron emitting

impurities. Moreover, the photon flux above 10.5 eV was only 10 percent at

most of the level prevailing at lower photon energies. The threshold energy

Et = 10.57 eV was obtained (fig. 2) by extrapolation [16] after subtraction

of the yield Y H 0 for emission by water (E t = 10.06 eV) from the total

yield for emission by water and fluoride ion. The yield YH 0 in the range

of emission by fluoride ion was obtained by extrapolation above 10.6 eV the

linear plot of YH201/2 against photon energy observed below the

threshold energy of fluoride ion. The linearity of the extrapolation plot for

pure water was verified Lp to 11.0 eV. More accurate values of the change of
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free energy are available for A-(aq) + H+(aq) = A(g) + 1/2H 2(g) for the

halides [19], and the error on aG in table 2 arises mostly from the

uncertainty on the free energy of solvation of the halogen atoms.

Only the continuous medium model of the outer-sphere region enters into

the computation of ROUT in table 2. This model is reliable and not

sensitive to the choice of rc, and the values of RIN thus obtained can be

regarded as "experimental" data. These values are, of course, independent of

any model for the inner-sphere region, but two sources of error on R inIN

table 2 must be noted: (i) the uncertainty of -0.1 eV on Et resulting from

the distortion of the extrapolation plot caused by the effect of dielectric

dispersion on the energetics of photoionization [20]; (ii) the uncertainty of

*n.1 eV on tG arising from the estimation of the free energy of solvation of

the halogen atoms and hydroxyl radical [9]. The first source of error affects

especially the threshold energy of chloride ion, and values of Et ranging

from 8.8 to 9.0 eV are obtained depending on the extrapolation range of photon

energies.

Agreement between the experimental free energies R IN of table 2 and the

calculated energies UIN in table I is remarkably good for the halides. The

entropy contribution to RIN is probably within the experimental error (see

above). The rather good agreement for the hydroxide ion also shows that the

spherical symmetry of the ion, which prevails for the halide ions, is not

absolutely essential to the application of the present theoretical

calculations.
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Table 2

Free energies RIN for inner-sphere reorganization from experimental

threshold energies

Anions Et a) aG b)ROUT R IN

(eV) (eV) (ev) (eV)

F- 10.6 3.6 0.96 1.56

Cl- 8.9 2.55 0.87 1.00

Br- 8.15 2.0 0.84 0.83

1- 7.4 1.4 0.80 0.72

OH- 8.6 1.8 0.94 1.38

a)From refs. [1] and [17].

b)From ref. [9] except for OH- [18]. See text for comments on AG.

V
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Captions to Figures

Fig. 1. Solvation, photoelectron emission from the anion and nuclear

reorganization for a univalent A- in aqueous solution. Cavity radii r. and

rf for A-(aq) and A(aq), respectively; Ni and Nf solvent molecules in

the inner-sphere shell of A-(aq) and A(aq), respectively. The shaded area

represents the outer-sphere region.

Fig. 2. Extrapolation plot for the determination of the threshold energy of

fluoride ion for 5 M KF in aqueous solution. See text for the determination of

the yield Y - of fluoride ion from the measured yield.

I
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